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Abstract 
 
Descriptive sampling (DS) is an alternative to crude Monte Carlo sampling (CMCS) in finding solutions to structural reliability prob-

lems. It is known to be an effective sampling method in approximating the distribution of a random variable because it uses the determi-
nistic selection of sample values and their random permutation,. However, because this method is difficult to apply to complex simula-
tions, the sample size is occasionally determined without thorough consideration. Input sample variability may cause the sample size to 
change between runs, leading to poor simulation results. This paper proposes a numerical method for choosing a suitable sample size for 
use in DS. Using this method, one can estimate a more accurate probability of failure in a reliability problem while running a minimal 
number of simulations. The method is then applied to several examples and compared with CMCS and conventional DS to validate its 
usefulness and efficiency. 
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1. Introduction 

Systems having high performance and confidence levels are 
in demand. Consequently, estimating a system’s probability of 
failure during the initial design phase is important. The first 
step in calculating the probability of failure of a structure is to 
choose random variable X=(X1, X2, …, Xnv), where nv is    
the number of input variables, and then determine their func-
tional relationship, ( )Z g= X , which corresponds to the per-
formance criterion. The limit state function, g , of interest can 
then be defined as 0Z = , which is the boundary between the 
safe and unsafe regions in the design parameter space. 

Reliability analysis involves calculating the probability of 
failure, fP , which is a multiple integral of the joint probabil-
ity density function (PDF) on the failure surface of the limit 
state function. We find that failure occurs when 0Z < , and 
thus the probability of failure is given by the integral 
 

, )(
0)(∫∫ <

=
X X xx

gf dfP "  

 
where ( )fX x  is the joint PDF of X . The limit state function 
plays an important role in a reliability problem. It may be an 

explicit or implicit function of the input variables and can be 
written in simple or complicated form. However, in general, 
finding the PDF of arbitrary random variables is almost im-
possible. Even if the function can be found, the calculation of 
the multiple integral is difficult. Thus, studies have been con-
ducted on several methods used for estimating the probability 
of failure.  

One approach to calculating the multiple integral is the use 
of analytical approximation methods, such as the moment 
method, which is the most probable point-based method, and 
the sampling method. The moment method is a method in 
which one acquires the cumulative distribution function by 
estimating the moment such as mean, variance and skewness, 
thus estimating the distribution characteristic or the probability 
of failure [1-3]. This method, however, requires more experi-
mentations as the number of design variables increases. It also 
has its limitations on problems with small probabilities. 

The most probable point-based method takes the most 
probable failure point (MPP), which lies on the failure surface 
and which corresponds to the maximum likelihood of failure 
occurrence, measuring the probability of failure through this. 
This method can be grouped into two types: first-order reli-
ability methods (FORM) and second-order reliability methods 
(SORM). FORM has a limit in accuracy, although is an effi-
cient method to perform reliability analysis. The evaluation of 
reliability by linear approximation leads to erroneous esti-
mates for limit state functions. The reliability measure is also 
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equal regardless of the state of failure surface at about the 
same MPP. In the case of SORM, if the fitted point is inap-
propriate, the reliability estimate may also be inaccurate. Fur-
thermore, the SORM approach can obtain the wrong curvature 
caused by the numerical noise, and the computation time in-
creases when the number of random variables increases [4-8].  

Sampling methods, such as crude Monte Carlo sampling 
(CMCS), importance sampling (IS), and descriptive sampling 
(DS), are used in the approximation of integration technique. 
The basic concept of CMCS is simple and can be used to cal-
culate the probability of failure without the transformation of 
the limit state function. However, this method requires huge 
samples to obtain an accurate estimator [9-13]. For variance 
reduction of the estimate of integration, IS is used. It concen-
trates the distribution of sampling points in the region of most 
importance. However, the drawback of IS is that the accuracy 
of the estimate depends on the choice of the sampling density 
function, and the region of most importance must be known in 
advance [12, 13]. 

An alternative approach to CMCS is DS. It is based on a de-
terministic selection of the input sample values and their ran-
dom permutations. The usefulness of DS was confirmed in 
several comparisons conducted by Saliby [14-16]. The esti-
mate obtained by DS is unbiased and has a lower variance 
than that obtained by the classical method of CMCS [17, 18]. 
In Ziha [19], DS was applied to IS for the reduction of vari-
ance in the probability of failure. It has also been used in ex-
perimental design [20, 21] and risk analysis simulation [22, 
23]. 

Applying DS to complex experiments is difficult, and thus 
the sample size is sometimes determined haphazardly by the 
user. Sample size may also vary between runs due to input 
sample variability, leading to poor simulation results. To over-
come this problem, a numerical method for choosing a suit-
able sample size is proposed. By using the proposed method, a 
more accurate probability of failure can be estimated using a 
minimal number of simulations. 

We present several examples to show the performance of 
this method using R(ver. 2.6.1), a language and environment 
for statistical computing [24]. Through these examples, this 
method is shown to be both useful and efficient. 
 

2. Concept of descriptive sampling 

DS was proposed in order to avoid set variability in simula-
tion studies. When using standard simple random sampling or 
the CMCS approach, two kinds of variation occur in a ran-
domly generated sample: one is related to the set of values and 
the other to their sequences. The set of values, which is de-
fined by sample values, is taken together but without consider-
ing the its particular sequence or the particular sequence in 
which the values occur. Both features are closely related to the 
two basic probability concepts: the set of values is expected to 
display a pattern of relative frequencies in good agreement 
with the sampled distribution, and the sequence is expected to 

display a lack of order of such values or a pattern of random-
ness. When using simple random sampling, both set and se-
quence are allowed to vary. Once they vary, simulation esti-
mates will also vary. Therefore, both features can be ascer-
tained as the two sources of variability of simulation estimates 
[15, 16, 25].  

DS is designed to reduce or remove set variability. It is 
based on the deterministic selection of input sample values 
and their random permutations. Symbolically, it follows that 
 

DS = deterministic set ×  random sequence, 
 
while 
 

CMCS = random set ×  random sequence. 
 

Unlike CMCS, the use of DS requires knowledge of the to-
tal sample size, N , which is related to a full simulation run 
[26]. Once the sample size is known, at least approximately, 
the set of values can be defined for each input random variable 

jX , 1, , vj n= " , using the inverse transform method, and thus 
 

1[( 0.5) / ]
j

i
j X sx F i n−= − , 1, , si n= " ,         (1) 

 
where 1( )

jXF R− , (0,1)R ∈ , is the inverse transform for the 
particular input distribution, and sn  is the input sample size 
of each input variable [27]. 

To complete the DS generation process, each of the sets of 
input values is used in a random sequence in each simulation 
run. Unlike in simple random sampling, the set of values is the 
same for all replicated runs, rn , in a simulation. This random 
shuffling process is easily accomplished by sampling the de-
scriptive set of values without replacement [15]. 

Consider an vn -dimensional design problem. For each ran-
dom variable jX , a one-dimensional descriptive set of input 
sample size sn  can be generated according to Eq. (1). The 
total theoretical number of samples in an vn -dimensional 
space is 
 

vn
t sn n= . 

 
If N -samples are requested, where s tn N n≤ ≤ , the num-

ber of runs is  
 

/r sn N n= .                              (2) 
 

The anticipated input sample size, sn , lies within 10% of 
the actual sample size used in a conventional simulation [27]. 
In reliability problems, the descriptive set has to be large 
enough to account for the tail of the distribution in the design 
point, *X , in 
 

1/*

1
min [1 ( )] [1 (1 ) ]/ 2v

j
v

n
t X fj n

F F X P
≤ ≤

= − ≈ − − .  (3) 

 
The input sample size can be found in Eqs. (1) and (3), 
 

( 0.5) /s tn i F= − .                         (4) 
 
The minimal sample size is found by assuming that at least 
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one element of the descriptive set is in the failure region, 
1i = , in Eq. (4). This is usually not the most efficient sample 

size, and an adjustment is needed for each particular problem. 
Hence, the total number of evaluations is defined as 
 

s rN n n= .                               (5) 
 
Therefore the input sample size and the number of runs have 
to be calculated and determined to obtain the total sample size. 

An explanation of the DS algorithm follows. A set value, 
( , )s vX n n , is generated. A pointer array, ( , )s vIP n n , for the 

permutation of indices instead of set values is then determined. 
( )vIL n  is the integer vector, pointing to the first available 
( , )s vIP n n . 

Fig. 1 shows the flow chart of this algorithm. In Step 1, a 
descriptive set value, ( , )s vX n n , is generated by Eq. (1). In 
Step 2, a pointer array is randomly permutated for each vari-
able in Step 1. The probability of failure for the current run is 
then calculated in Step 3. 

For example, if samples in 10N = , 0.79fP = , and 
7vn =  are used, the input sample size and the number of runs 

are calculated to be 5sn =  and 2rn = from Eqs. (2-4). Ta-
ble 1 presents randomly permutated pointer values and de-
scriptive sample set values for a seven-dimensional problem, 
in which 10N = , 7vn = , 5sn = ,  and 2rn = . For 1rn =  
and 2rn = , the five pointer values are generated by random 
permutation without replacement. The set values in Table 1 
show that the descriptive sample set is generated according to 
Eq. (1) from the standard normal distribution, (0, 1)N . 
 
3. Numerical method for the determination of sample size 

As shown in Chapter 2, the total number of evaluations in a 
reliability problem is determined by the number of input vari-

ables, the input sample size, and the number of replicated runs. 
Of these parameters, the number of input variables is most 
easily determined because it is related to the problem defini-
tion. Therefore, to adapt DS to real problems, only the input 
sample size and the number of replicated runs must be deter-
mined. However, in many cases, these have been chosen 
without thorough consideration by the user, who does not 
know how to determine them. Moreover, because the accu-
racy of the results is not guaranteed, applying this method to 
complex simulations is difficult. A suitable input sample size 
and the number of iterations are required. In a failure probabil-
ity computation, a “suitable” sample size is the minimum 
sample size for an acceptably accurate result. 

A numerical method for the determination of a suitable 
sample size in DS, is proposed. The method has three stages: 
1) the probability of failure is approximated; 2) the input sam-
ple size is determined using the approximated probability of 
failure; and 3) the number of iterations is determined to obtain 
the total sample size.  

 
3.1 Approximation of the probability of failure 

In Eqs. (2) and (3), we observed that the probability of fail-
ure must be calculated to obtain the input sample size. How-
ever, calculating the probability of failure is not possible with-
out an input sample size because all simulations require input 
points. Hence, an approximation of the probability of failure 
must be made. At this stage, the approximation is found using 
several crude Monte Carlo samples.  

The numerical method for the approximation of the prob-
ability of failure is illustrated in Fig. 2. First, the lower limit of 
the number of failures, 

0f
n , and the lower limit of the prob-

ability of failure, 
0f

P , are initiated. These are the criteria used 
in choosing if the approximated probability of failure is rea-

 
 
Fig. 1. Flow chart of DS for reliability analysis. 
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Table 1. Example of a shuffled set of pointer array for 10N = , 7vn = , 5sn = , and 2rn = , and the set values from the standard normal distribu-
tion (0,1).N  
 

Point array Set values 

    vn
rn  sn  1 2 3 4 5 6 7 1 2 3 4 5 6 7 

1 5 3 5 3 1 1 4 1.28 0.00 1.28 0.00 -1.28 -1.28 0.52 
2 2 1 1 5 3 4 5 -0.52 -1.28 -1.28 1.28 0.00 0.52 1.28 
3 4 4 2 4 2 5 1 0.52 0.52 -0.52 0.52 -0.52 1.28 -1.28 
4 1 2 3 2 5 2 2 -1.28 -0.52 0.00 -0.52 1.28 -0.52 -0.52 

1 

5 3 5 4 1 4 3 3 -0.13 0.00 0.52 -1.28 0.52 0.00 0.00 
1 2 5 1 1 2 3 3 -0.52 1.28 -1.28 -1.28 -0.52 0.00 0.00 
2 4 3 5 3 4 5 2 0.52 0.00 1.28 0.00 0.52 1.28 -0.52 
3 5 2 4 5 3 1 1 1.28 -0.52 0.52 1.28 0.00 -1.28 -1.28 
4 3 1 3 4 1 2 5 0.00 -1.28 0.00 0.52 -1.28 -0.52 1.28 

2 

5 1 4 2 2 5 4 4 -1.28 0.52 -0.52 -0.52 1.28 0.52 0.52 

sonable. 
Setting 

0f
n  to be equal to 1 , and 

0f
P  to be equal to 

0.0001 is proposed. If the general value of fP  is known, 

0f
P   should be set equal to that value. The smallest input 
sample size, 1n , and the reasonable sample size, 2n , are also 
initiated to confirm the approximation of the probability of 
failure. That is, 1n  is used to choose the sampling stopping 
point that occurs when fP  is not reasonable, and 2n  is used 
to determine whether fP  has been approximated. Here, that 

1n  be set to 100 and 2n  be set to 10 is proposed no matter 
how complex the simulation. 

Subsequently, a CMCS is run. Here, if a CMCS shows 
( ) 0g X < , the number of failures, fn , is increased by one 

each. That is, fn is the counting number of failures. A simu-
lation can then be run along with the computation of fP . This 
step is repeated until the terminating condition is satisfied. 

That is, when fn  is less than 
0f

n , or when fP  is less than 

0f
P , and if  sn  is less than 1n , then go to [Runs 1 CMC] in 
Fig. 2. Otherwise, the approximated probability of failure is 
arbitrarily determined to be 0P . When fn  is larger than 

0f
n , fP  is larger than 

0fP , and sn  is less than 2n , then go 
to [Runs 1 CMC] in Fig. 2. Otherwise, substitute fP  for 0P . 
In this way, the probability of failure, 0P , can be approxi-
mated. 
 
3.2 Determination of input sample size 

At this stage, an input sample size can be computed using 
the approximated probability of failure, 0P . In Eq. (3), tF  
can be determined by inserting the value for 0P  computed in 
Section 3.1; the input sample size is then computed as in Eq. 
(4). According to Ziha [19], the minimal sample size is ob-
tained by assuming 1i =  in Eq. (4), but this assumption is 
not valid because an element of the descriptive set cannot be 
in the failure region. One must confirm this assumption before 
using DS. 

In Fig. 3, a numerical method for choosing the input sample 

 
 
Fig. 2. Flow chart of the approximation of the probability of failure. 

 
 
Fig. 3. Flow chart of the determination of input sample size. 
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size is suggested. First, when 1i =  in Eq. (4), the initial input 
sample size, 

0sn , is calculated using 0P  from Fig. 2. DS is 
then experimented once using 

0sn  to obtain fn  and fP . If 
fn  or fP  is very small, a new probability of failure, 0P , 

must be determined to find a suitable input sample size, sn . 
The values of 

0fn  and 
0fP  must be set to a small value. That 

0fn  be set to 1  and 
0f

P  be equal to 0.0001  is proposed, 
as stated previously. That 0P  be set to a value 0.5  times 
smaller than the previous value of 0P is also proposed. Oth-
erwise, there is a need to substitute sn  for 

0sn  and to termi-
nate the iterations. In this way, a total sample size with a suit-
able input sample size sn is obtained. 

 
3.3 Determination of the number of runs 

After the input sample size is determined as shown in Sec-
tion 3.2, the number of runs, rn , needed to minimize the total 
sample size while maintaining precision is given by Eq. (5).  

Fig. 4 shows a numerical method for determining the total 
sample size. First, fn  and rn  are set to 0. Next, DS is ex-
perimented once with the input sample size, and the number 
of failures, 

1f
n , is computed. Then, fn , rn  and N  can be 

updated. The number of runs, rn , is found when the values of 
fP  converge, and the iterations are stopped. To determine 

when fP  converges, iterations continue until a simulation 
gives the same result as the previous simulation. At this point, 
the iterative process is terminated, and fP  is known. 

A numerical method to choose the total sample size in DS is 
proposed. Using this numerical method, one can estimate the 
probability of failure more accurately with a minimal number 
of simulations. 
 

4. Simulation 

In this section, our numerical method for choosing the total 
sample size in DS with five mathematical examples using 
functions of both low and high dimensions is validated. Using 
these examples, the usefulness and efficiency of the proposed 

method can be presented. 
In each example, the precision of the probability of failure 

and the total sample size found using the proposed method are 
acceptable. For comparisons, DS was run once with the pro-
posed numerical method to determine the input sample size 
and the number of runs. CMCS was then run using the same 
total sample size used in DS. The results show that DS com-
pares favorably with CMCS but does not guarantee that the 
proposed method is superior to the conventional DS method, 
in which the parameters are determined haphazardly. Hence, a 
comparison of the proposed method with the conventional 
method was conducted by running several simulations using 
the same total sample size in all of them. 

The procedure for validating the proposed method was as 
follows. First, the method was executed once in DS, and the 
total sample was determined. The total sample size was then 
altered slightly to compare the proposed method with the con-
ventional method, because DS must be executed with many 
combinations of input sample sizes and numbers of runs, but 
with the same total sample size. An altered total sample size 
can be decomposed as products of two integers, where at least 
one integer is greater than or equal to 100. In this way, the 
CMCS method, which is the conventional method, and the 
proposed method of DS were compared using the same total 
sample size. These comparisons were done using the results of 
100 independent runs and are summarized by the precision, 
variance, and coefficient of variation of the computed prob-
ability of failure. 

 
4.1 Low dimensional examples 

These examples are two-dimensional functions formed with 
convex, concave, and non-convex and non-concave functions. 
These functions are frequently used for calculating reliability 
[3]. In these examples, 

0
1fn = , 

0
0.0001fP = , 1 200n = , and 

2 20n =  are set. 
 

4.1.1 Convex performance function 
A convex function is given as 

 

1 2( ) exp( 7) 9g X XX = − − − + , 
 
where 1X  and 2X  represent the independent 2(6.0, 0.8 )N . 
The exact probability of failure, exactP , is obtained using 
10,000,000 crude Monte Carlo runs, 
 

39.20 10exactP −= × . 
 

Based on Section 3, the total sample size is determined to be 
1000N = . The input sample size and the number of repli-

cated runs are changed to 200sn =  and 5rn = , respectively, 
for comparison with the conventional method. 

Table 2 shows that the probability of failure found using DS 
is the same as the exact probability of failure.  

The proposed method provides a more accurate probability 
of failure, a lower variance, and a lower coefficient of varia-

 
 
Fig. 4. Flow chart of the determination of the number of runs. 
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tion than CMCS. In comparing three results found using the 
conventional method with different input sample sizes and 
numbers of runs, 1000sn =  and 1rn = , 500sn =  and 

2rn = , and 100sn =  and 10rn = , the proposed method 
gives a more accurate estimate of the probability of failure. 

 
4.1.2 Concave performance function 

A concave function is given as 
 

3 3
1 2( ) 18g X XX = + − , 

 
where 2

1 ~ (10, 5 )X N  and 2
2 ~ (9.9, 5 )X N . The exact 

probability of failure is 35.70 10exactP −= × , obtained using 
10,000,000  crude Monte Carlo runs. 

The input sample size and the number of runs are deter-
mined to be 350sn =  and 3rn = , respectively, using the 
proposed method. Table 3 shows that the probability of failure 
found using the proposed method converges to the exact prob-
ability of failure. The method provides a more accurate esti-
mate than that given by CMCS. This method also gives a 
lower coefficient of variation compared with any of the results 
found using DS. 

 
4.1.3 Non-convex and Non-concave function 

An example of a non-convex and non-concave function is 
given by 
 

2 3 4
1 1 1 2( ) 3 ( 0.25) ( 0.25) ( 0.25)g X X X XX = − + + + + + − , 

 
where 1X  and 2X  are the independent standard normal 
random variables. The exact probability of failure is obtained 
using 10,000,000crude Monte Carlo runs, 33.63 10exactP −= × . 

In this example, the input sample size and the number of 
runs are determined to be 450sn =  and 13rn = , respectively. 

Table 4 shows that the total number of simulations in DS is 
greater than that for the convex and concave functions, but the 
results are similar. The probability of failure found with DS 
using the proposed method is a good approximation to the 
exact probability of failure and is more accurate than that 
found using CMCS. Although the probability of failure in DS 
using input sample size 5850sn = , and the number of repli-
cated runs 1rn =  is more accurate than that found using the 
proposed method, the method gives a lower coefficient of 
variation compared with the other results found using DS. 

 
4.2 High-dimensional examples 

These examples are multi- and complicated functions. One is 
a function containing both artificial and high-frequency noise; 
the other is the union of three high-dimensional functions. In 
these examples, 

0f
n , 

0f
P , 1n , and 2n  are set differently 

than in the previous examples. Simulation with DS using the 
proposed method is run, followed by that using CMCS and 
conventional methods. 

 
4.2.1 Function with artificial and High-frequency noise 

The following limit state function [28] is selected: 
 

1 2 3 4 5 6( ) 2 2 5 5g X X X X X X= + + + − −X  
1 2 30.0001(sin(100 ) sin(100 ) sin(100 )X X X+ + +  

4 5 6sin(100 ) sin(100 ) sin(100 ))X X X+ + +  
 

This function contains artificial and high-frequency noise 
from six independent random variables with the following log 
normal distribution: 
 

2
1 2 3 4, , , ~ (120,12 )X X X X Lognormal , 

2
5 ~ (50,15 )X Lognormal , 2

6 ~ (40,12 )X Lognormal . 
 

The exact probability of failure calculated with crude Monte 
Carlo sampling is 0.0121exactP =  using the NESSUS Pro-
gram Version 6.0 [29] with 10,000,000 runs. 

By letting 
0

1fn = , 
0

0.001fP = , 1 100n = , and 2 20n = , 
as shown in Figs. 2-4, the input  sample size, 350sn = , and 
the number of replicated runs, 45rn =  are determined. As 
shown in Table 5, DS using the proposed method gives a bet-

Table 3. Comparison of results for the concave function. 
 

Method 
aN  

( s rn n× ) 
310fP −×  6var 10−×  c.o.v 

CMC 1050 5.85 5.699 0.408 

1050 × 1 5.70 5.460 0.410 

350 × 3 b  5.70 4.562 0.375 

210 × 5 5.48 4.350 0.381 
DS 

105 × 10 5.44 4.275 0.238 
a Total sample size 1050N =  
b Result from the proposed method 

 
Table 4. Comparison of results for the non-convex and non-concave 
function. 
 

Method 
aN  

( s rn n× ) 
310fP −×  6var 10−×  c.o.v 

CMC 5850 3.52 0.592 0.691 

5850 × 1 3.63 0.482 0.191 

1170 × 5 3.66 0.324 0.156 

450 × 13 b  3.62 0.290 0.149 
DS 

225 × 26 2.94 0.268 0.176 
a Total sample size 5850N =  
b Result from the proposed method 

Table 2. Comparison of results for the convex function. 
 

Method 
aN  

( s rn n× ) 
310fP −×  6var 10−×  c.o.v 

CMC 1000 9.24 8.992 0.325 

1000 × 1 9.21 7.016 0.288 

500 × 2 9.21 4.854 0.239 

200 × 5 b  9.20 4.000 0.217 
DS 

100 × 10 7.86 3.778 0.247 
a Total sample size 1000N =  
b Result from the proposed method 
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ter result than CMCS and is more efficient than the conven-
tional method. 

 
4.2.2 Function which is the union of three high-dimensional 

functions 
The plane frame structure from Madsen et al. [30] is con-

sidered in this example. The principle of virtual work gives 
three limit state functions: 
 

1 1 1 2 4 5 6sway : ( ) 5F g X X X X X= + + + −X , 

2 2 1 3 4 5 6 7frame : ( ) 2 2 5 5F g X X X X X X= + + + − −X , 

3 3 2 3 4 7beam : ( ) 2 5F g X X X X= + + −X . 
 

Plastic moment capacities and loads are lognormally distrib-
uted independent variables: 
 

1 2 3 4, , ,X X X X  and 2
5 ~ (134.9,13.49 )X Lognormal , 

2
6 ~ (50,15 )X Lognormal , 2

7 ~ (40, 12 )X Lognormal . 
 

The exact probability of failure [30] is 
 

3
3

1

4.85 10exact i
i

P P F −

=

⎛ ⎞
⎜ ⎟= = ×
⎜ ⎟
⎝ ⎠
∪ . 

 
By setting 

0
1fn = , 

0
0.0001fP = , 1 300n = , and 2 50n = , 

as shown in Figs. 2-4, the input sample size, 1000sn = , and 
the number of runs, 30rn = are determined. Table 6 shows 
that the probability of failure found using DS is more accurate 
than that found using CMCS, and the variance in the DS re-

sults is lower. The proposed method also finds a lower vari-
ance, a lower coefficient of variation, and a more efficient 
probability of failure than the other DS results. 

For the examples in this chapter, 10 ~ 100  as the range of 
rn is used. The range of rn  is not restricted, but the accuracy 

of the estimator decreases as rn  increases. Hence, using too 
large a number of runs, rn , for the simulations is avoided. 
 

5. Conclusions 

In this paper, a numerical method for choosing a suitable 
sample size is proposed. The usefulness of this method is 
demonstrated through comparisons with crude Monte Carlo 
sampling and descriptive sampling in reliability examples. 
The main results are as follows: 
(1) A three-stage numerical method is developed for calculat-

ing an accurate probability of failure with a minimal num-
ber of simulation runs. 
(a) The approximate probability of failure is computed 

and iteratively updated with one crude Monte Carlo 
sampling until the terminating condition is satisfied.  

(b) The input sample size is determined using the com-
puted approximate probability of failure.  

(c) The number of replicated runs required to compute the 
precise probability of failure is determined.  

In this manner, the suitable total sample size is obtained. 
(2) The simulation results show that descriptive sampling 

using the proposed method is more efficient than the crude 
Monte Carlo sampling and give a more accurate probabil-
ity of failure across input sample sizes and a number of 
runs in given problems. 
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